Copied to
clipboard

G = C22xC4wrC2order 128 = 27

Direct product of C22 and C4wrC2

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C22xC4wrC2, C42:19C23, C24.171D4, M4(2):11C23, D4:6(C22xC4), Q8:6(C22xC4), (C22xD4):28C4, C4.10(C23xC4), (C22xQ8):22C4, (C2xC4).180C24, (C22xC42):18C2, (C2xC42):86C22, C4oD4.19C23, C23.640(C2xD4), (C22xC4).820D4, C4.180(C22xD4), C22.27(C22xD4), (C2xM4(2)):72C22, (C22xM4(2)):21C2, (C23xC4).691C22, C23.132(C22:C4), (C22xC4).1498C23, C4o(C2xC4wrC2), (C2xC4)oC4wrC2, C4oD4:15(C2xC4), (C2xC4oD4):21C4, (C2xD4):50(C2xC4), (C2xQ8):41(C2xC4), C4.76(C2xC22:C4), (C2xC4).1564(C2xD4), (C22xC4).416(C2xC4), (C2xC4).462(C22xC4), (C22xC4oD4).21C2, C22.23(C2xC22:C4), C2.42(C22xC22:C4), (C2xC4).285(C22:C4), (C2xC4oD4).275C22, (C2xC4)o(C2xC4wrC2), SmallGroup(128,1631)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C22xC4wrC2
C1C2C4C2xC4C22xC4C23xC4C22xC4oD4 — C22xC4wrC2
C1C2C4 — C22xC4wrC2
C1C22xC4C23xC4 — C22xC4wrC2
C1C2C2C2xC4 — C22xC4wrC2

Generators and relations for C22xC4wrC2
 G = < a,b,c,d,e | a2=b2=c4=d2=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=c-1, ce=ec, ede-1=c-1d >

Subgroups: 716 in 428 conjugacy classes, 180 normal (17 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C23, C42, C42, C2xC8, M4(2), M4(2), C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, C4oD4, C4oD4, C24, C24, C4wrC2, C2xC42, C2xC42, C22xC8, C2xM4(2), C2xM4(2), C23xC4, C23xC4, C22xD4, C22xD4, C22xQ8, C2xC4oD4, C2xC4oD4, C2xC4wrC2, C22xC42, C22xM4(2), C22xC4oD4, C22xC4wrC2
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22:C4, C22xC4, C2xD4, C24, C4wrC2, C2xC22:C4, C23xC4, C22xD4, C2xC4wrC2, C22xC22:C4, C22xC4wrC2

Smallest permutation representation of C22xC4wrC2
On 32 points
Generators in S32
(1 13)(2 14)(3 15)(4 16)(5 11)(6 12)(7 9)(8 10)(17 31)(18 32)(19 29)(20 30)(21 27)(22 28)(23 25)(24 26)
(1 7)(2 8)(3 5)(4 6)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 28)(2 27)(3 26)(4 25)(5 30)(6 29)(7 32)(8 31)(9 18)(10 17)(11 20)(12 19)(13 22)(14 21)(15 24)(16 23)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)

G:=sub<Sym(32)| (1,13)(2,14)(3,15)(4,16)(5,11)(6,12)(7,9)(8,10)(17,31)(18,32)(19,29)(20,30)(21,27)(22,28)(23,25)(24,26), (1,7)(2,8)(3,5)(4,6)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,28)(2,27)(3,26)(4,25)(5,30)(6,29)(7,32)(8,31)(9,18)(10,17)(11,20)(12,19)(13,22)(14,21)(15,24)(16,23), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)>;

G:=Group( (1,13)(2,14)(3,15)(4,16)(5,11)(6,12)(7,9)(8,10)(17,31)(18,32)(19,29)(20,30)(21,27)(22,28)(23,25)(24,26), (1,7)(2,8)(3,5)(4,6)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,28)(2,27)(3,26)(4,25)(5,30)(6,29)(7,32)(8,31)(9,18)(10,17)(11,20)(12,19)(13,22)(14,21)(15,24)(16,23), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32) );

G=PermutationGroup([[(1,13),(2,14),(3,15),(4,16),(5,11),(6,12),(7,9),(8,10),(17,31),(18,32),(19,29),(20,30),(21,27),(22,28),(23,25),(24,26)], [(1,7),(2,8),(3,5),(4,6),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,28),(2,27),(3,26),(4,25),(5,30),(6,29),(7,32),(8,31),(9,18),(10,17),(11,20),(12,19),(13,22),(14,21),(15,24),(16,23)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)]])

56 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M2N2O4A···4H4I···4AB4AC4AD4AE4AF8A···8H
order12···2222222224···44···444448···8
size11···1222244441···12···244444···4

56 irreducible representations

dim11111111222
type+++++++
imageC1C2C2C2C2C4C4C4D4D4C4wrC2
kernelC22xC4wrC2C2xC4wrC2C22xC42C22xM4(2)C22xC4oD4C22xD4C22xQ8C2xC4oD4C22xC4C24C22
# reps11211122127116

Matrix representation of C22xC4wrC2 in GL5(F17)

160000
016000
001600
000160
000016
,
160000
01000
00100
00010
00001
,
10000
016000
001600
000130
00004
,
10000
00100
01000
00004
000130
,
160000
01000
001600
000160
00004

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,13,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,13,0,0,0,4,0],[16,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,4] >;

C22xC4wrC2 in GAP, Magma, Sage, TeX

C_2^2\times C_4\wr C_2
% in TeX

G:=Group("C2^2xC4wrC2");
// GroupNames label

G:=SmallGroup(128,1631);
// by ID

G=gap.SmallGroup(128,1631);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,2804,1411,172,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^2=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=c^-1,c*e=e*c,e*d*e^-1=c^-1*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<